Photosensitized Hydride Transfer. Highly Regioselective 1,4-Photoreduction of NAD(P) + Models under Visible Light with an Organometallic Rhodium(III) Porphyrin as Sensitizer 1)

Yasuhiro AOYAMA, * Koji MIDORIKAWA, Hiroo TOI, and Hisanobu OGOSHI*

Department of Materials Science and Technology, Technological

University of Nagaoka, Kamitomioka, Nagaoka, Niigata 940-21

An organometallic acetyl-Rh complex of octaethylporphyrin catalyzes under the visible light the photoreduction of 1-benzyl-nicotinamide (BNA⁺) or 1-benzyl-3-acetylpyridinium ion (BAP⁺) as NAD(P)⁺ model with tetraphenylborate as a reductant and an alcohol as a proton source to give the corresponding 1,4-dihydro derivative (BNAH or BAPH) as the sole reduction product and biphenyl as the oxidation product of B(C_6H_5) $_4$.

Redox photosensitization, especially in relation to artificial photosynthesis, is a rapidly growing area.²⁾ Metal complexes (M), such as chlorophylls, Zn-porphyrins, and [Ru(bpy)₃]²⁺ (bpy; 2,2¹-bipyridine), usually undergo photo-induced one-electron (le) transfer (Eq. 1, where M is either D (donor) or A (acceptor)),²⁾ and directly catalyze le redox reactions by radical mechanisms.³⁾

$$D + A \xrightarrow{hv} D^{+} + A^{-}$$
 (1)

Heterogeneous colloidal catalysts have been used as electron pools to link up le photosensitization processes and multi-electron reactions at the redox termini. 4) On the other hand, we have been trying to develop new photosystems involving two-electron (2e) or equivalent hydride transfer which is photosensitized by homogeneous metal complexes. Now, we wish to report that a Rh(III) porphyrin catalyzes a number of novel photochemical hydride-transfer reactions under the visible light.

Photosynthetic electron transport results in the reduction of nicotinamide coenzyme NADP⁺ to NADPH. An organometallic acetyl-Rh(III) complex of octaethyl-porphyrin, (OEP)Rh^{III}-COCH₃, ⁵⁾ was found to catalyze the photoreduction of 1-benzylnicotinamide (BNA⁺) and the 1-benzyl-3-acetylpyridinium ion (BAP⁺) as NAD(P)⁺ model to the corresponding 1,4-dihydro derivatives (BNAH and BAPH) with tetraphenylborate (B(C₆H₅)₄⁻) as a reductant. ⁶⁾ This ion is known to undergo 2e oxidation with a variety of oxidants, giving rise to biphenyl according to Eq. 2.7) Thus, irradiation of a degassed solution of (OEP)Rh^{III}-COCH₃ (1.1 x 10⁻⁶

$$B(C_6H_5)_4$$
 B $C_6H_5)_2$ + C_6H_5 + 2e (2)

mol) and BNA⁺B(C_6H_5)₄ (2.2 x 10⁻⁵ mol)⁸) in C_6H_6 -CH₃CN-(CH₃)₂CHOH (5:2:5 v/v) with a 500-W xenon lamp (>500 nm) at 15 °C for 9 h afforded BNAH (1.5 x 10⁻⁵ mol; yield, 940 and 68% based on the Rh complex and the BNA salt used, respectively)

1652 Chemistry Letters, 1987

and $C_6H_5-C_6H_5$ (1.5 x 10^{-5} mol) (Eq. 3).⁹⁾ The Rh complex was recovered as unchanged. Neither the 1,6-dihydro derivative nor the nicotinamide dimer which

 $BNA^{+}B(C_{6}H_{5})_{4}^{-}: X = CONH_{2}$ $BNAH: X = CONH_{2}$ $BAP^{+}B(C_{6}H_{5})_{4}^{-}: X = COCH_{3}$ $BAPH: X = COCH_{3}$

might result from le reduction of BNA⁺ was detected among products. No reaction took place in the dark, or in the absence of $B(C_6H_5)_4^-$ as a counteranion, an alcohol as a solvent, or the Rh complex as a catalyst.¹⁰⁾ Meanwhile, (OEP) Zn^{II} in place of the Rh complex showed no catalytic activity at all. The formation of BNAH (λ_{max} 352 nm) was monitored by electronic spectroscopy, while (OEP) Rn^{III} -COCH₃ was found to undergo no spectral change during reaction. Irradiation of a solution containing the Rh complex and $NaB(C_6H_5)_4$ resulted in bleaching of the complex. $BAP^+B(C_6H_5)_4^{-8}$ in $C_6H_6^-CH_3CN-CH_3OH$ (3:3:10 v/v) was photoreduced in a similar manner as observed for $BNA^+B(C_6H_5)_4^-$ and gave BAPH (Eq. 3). When this reaction was carried out in a solvent containing CH_3OD , a deuterium atom was incorporated into the 4-position of BAPH, as confirmed by the 1H NMR analysis. These results suggest that the Rh-porphyrin catalyzes the generation of reactive hydride "H⁻" upon photochemical oxidation of $B(C_6H_5)_4^-$ in an alcohol (as a proton source) (ROH + $B(C_6H_5)_4^-$ + $h\nu$ — (RO) $B(C_6H_5)_2^-$ + $C_6H_5^ C_6H_5^-$ + "H⁻") and its highly regioselective transfer to the 4-positions of pyridinium rings.

The photosensitized hydride transfer was found to be generally applicable to the reduction of "commom" electrophiles with a variety of hydride donors such as NaBH4, alkoxides, and BNAH. Thus, irradiation of a mixture of NaBH4 (4.6 x 10^{-4} mol), dodecyl bromide (4.1 x 10^{-4} mol), and (OEP)Rh^III_COCH3 (5.3 x 10^{-6} mol) in THF for 20 h gave dodecane (2150% based on the Rh complex) as the sole organic product. When NaBD4 was used, dodecane-d1 (by mass spectrum) was formed with a kinetic isotope effect of k(BH4^-)/k(BD4^-) \cong 2 as regards its formation rate. These results confirm that the Rh complex catalyzes hydride transfer from BH4^- to an alkyl bromide, ruling out the possibility of homolytic processes leading to alkyl radicals which abstract a hydrogen atom from the solvent. A similar photo-reduction of dodecyl bromide took place with sodium ethoxide as a hydride donor in THF in the presence of an equivalent amount of 18-crown-6, giving rise to dodecane (in 1440% yield after 26 h) 12) and the equivalent amount of acetaldehyde which was identified as its 2,4-dinitrophenylhydrazone. The reduction of a ketone (cyclohexanone, 5.1 x 10^{-4} mol) with BNAH (8.4 x 10^{-4} mol) in CH3OH-C6H6 (7:3 v/v) was also photosensitized with (OEP)Rh^III_-COCH3 (2.7 x 10^{-6} mol) and gave cyclohexanol (1850% after 46 h) 12)

The stoichiometric hydride transfer from $NaBH_4$, alkoxide, or BNAH to the $Rh^{\rm III}$ center of (OEP) $Rh^{\rm III}$ -Cl took place readily under photochemical conditions or even in the dark. The present complex, (OEP) $Rh^{\rm III}$ -COCH $_3$, on the other hand, was stable toward these reagents in the dark, but underwent bleaching when irradi-

ated in the absence of any hydride acceptors. These results, coupled with our previous finding on facile migration of a carbanion from Rh to the meso-position of organorhodium OEP derivatives (Eq. 4, in a schematic form), 15) suggest a catalytic mechanism for the present reactions as shown in Scheme 1; photochemical hydride transfer from a donor (X-H; B(C₆H₅) $_4$ + alcohol, BH $_4$, alkoxide, or BNAH) to (OEP)Rh^{III}-COCH $_3$ to give the reduced intermediate (1==2), which subsequently transfers its hydride rapidly to an electrophile (Y; BNA $^+$, BAP $^+$, RBr, or ketone) or, in its absence, undergoes protonation leading to bleaching of the catalyst.

This work has been based on our previous finding that (OEP)Rh^{III}-Cl is an excellent hydride carrier.¹⁴⁾ That the Rh^{III} ion tends to undergo 2e redox reactions seems to be rather general.^{6a-d)} The present study shows that the redox reactivity of a Rh porphyrin is controlled by the introduction of an acetyl ligand to the axial site of Rh, so that it can be used as a hydride mediator under photochemical conditions. This finding will enlarge the scope and potentiality of photo-induced redox reactions in general, since the hydride ion (H⁻), metal-bound¹⁶⁾ or fixed in NAD(P)H models,¹⁷⁾ can undergo ready reactions, usually without catalyst, with a variety of electrophiles including H⁺, C=O, C=N, and activated C=C double bonds.

This work was supported by a Grant-in-Aid for Scientific Research (No. 61540441) from the Ministry of Education, Science, and Culture.

References

- 1) Catalytic Reactions of Metalloporphyrins. 4. Part 3: Y. Aoyama, Y. Tanaka, T. Fujisawa, T. Watanabe, H. Toi, and H. Ogoshi, J. Org. Chem., in press.
- 2) For example: M. Grätzel, Acc. Chem. Res., 14, 376 (1981).
- 3) G. R. Seely, J. Phys. Chem., <u>69</u>, 2779 (1965); C. Pac, Y. Mitauchi, O. Ishitani, M. Ihama, M. Yasuda, and H. Sakurai, J. Org. Chem., <u>26</u>, 49 (1984); K. Hironaka, S. Fukuzumi, and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, <u>1984</u>, 1705.

1654 Chemistry Letters, 1987

4) For water reduction to H_2 using Pt, see: J.-M. Lehn and J.-P. Sauvage, Nouv. J. Chim., $\underline{1}$, 449 (1977); J. Kiwi and M. Grätzel, Nature (London), $\underline{281}$, 657 (1979). For water oxidation to O_2 using RuO_2 , see: J. Kiwi and M. Grätzel, Angew. Chem., Int. Ed. Engl., $\underline{17}$, 860 (1978); J.-M. Lehn, J.-P. Sauvage, and R. Ziessel, Nouv. J. Chim., $\underline{3}$, 423 (1979). For CO_2 reduction to CH_4 using Ru, see: R. Maidan and I. Willner, J. Am. Chem. Soc., $\underline{108}$, 8100 (1986).

- 5) H. Ogoshi, J. Setsune, T. Omura, and Z. Yoshida, J. Am. Chem. Soc., <u>97</u>, 6461 (1975): (C=O) 1720 cm⁻¹; (COCH₃) -3.37. Anal. C, H, N.
- 6) For various systems for NADH regeneration from NAD⁺ in aqueous solutions, see:
 O. Abril and G. M. Whitesides, J. Am. Chem. Soc., <u>104</u>, 1552 (1982) and reference therein; R. Wienkamp and E. Steckhan, Angew. Chem., Int. Ed. Engl., <u>21</u>, 782 (1982); R. Wienkamp and E. Steckhan, ibid., <u>22</u>, 497 (1983); P. Cuendet and M. Grätzel, Photochem. Photobiol., <u>39</u>, 609 (1984).
- 7) D. H. Geske, J. Phys. Chem., <u>66</u>, 1743 (1962); J. C. Doty, P. J. Grisdale, T. R. Evans, and J. L. R. Williams, J. Organomet. Chem., <u>32</u>, C35 (1971); P. Abley and J. Halpern, J. Chem. Soc., Chem. Commun., <u>1971</u>, 1238; D. L. Schlyer and M. A. Ring, J. Organomet. Chem., <u>71</u>, C25 (1974).
- 8) Prepared by the reaction of NaB(C_6H_5)₄ with BNA⁺Cl⁻ or BAP⁺Cl⁻ in acetone.
- 9) The reaction mixture was chromatographed on silica gel with $CHCl_3$ as an eluant to give (OEP)Rh^{III}-COCH $_3$ (identified by 1 H NMR and electronic spectra) and BNAH (identified by comparison of its 1 H NMR, fluorescence, and electronic spectra with those of the authentic sample).
- 10) (OEP) $\mathrm{Rh}^{\mathrm{III}}$ -Cl was able to catalyze a similar photoreduction of $\mathrm{BNA}^{+}\mathrm{B}(\mathrm{C}_{6}\mathrm{H}_{5})_{4}^{-}$, but the identity of the axial ligand in the catalytically active species was not clear. When (OEP) $\mathrm{Rh}^{\mathrm{III}}$ -CH₃ was used, it underwent facile photochemical Rh-C bond cleavage, and then catalyzed the reduction of the BNA^{+} salt.
- 11) For the photosensitized dehydrogenation of 2-propanol and cyclohexanol with a Rh^{III} porphyrin, see: R. Irie, X. Li, and Y. Saito, J. Mol. Catal., 23, 17 (1984).
- 12) The hydride transfer reaction was not observed or took place very slowly in the absence of (OEP) ${\rm Rh}^{\rm III}$ -COCH $_3$ or in the dark.
- 13) For the reaction (OEP) Rh^{III} -Cl + BH_4^- —— (OEP) Rh-H + "BH3", see Ref. 14. (OEP) Rh^{III} -Cl also reacts with RO (R = CH_3 , CH_3CH_2 , and $(CH_3)_2CH$) in ROH to give [(OEP) Rh^I] and a carbonyl compound identified as its 2,4-dinitriphenylhydrazone. This reaction is thermally accessible but is photo-accelerated. A quite facile hydride transfer takes place between (OEP) Rh^{III} -Cl and BNAH in an inert solvent to give (OEP) Rh-H and RhA-Cl. This reaction is not detected for an alcohol solution, but reduction of the rhodium complex takes place when the solution is irradiated.
- 14) Y. Aoyama, T. Fujisawa, T. Watanabe, H. Toi, and H. Ogoshi, J. Am. Chem. Soc., 108, 943 (1986).
- 15) J. Setsune, T. Yazawa, H. Ogoshi, and Z. Yoshida, J. Chem. Soc., Perkin Trans. 1, 1980, 1641.
- 16) J. Hawecher, J.-M. Lehn, and R. Ziessel. J. Chem. Soc., Chem. Commun., 1985,
- 56; S. Gambarotta, S. Strologo, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Am. Chem. Soc., <u>107</u>, 6278 (1985).
- 17) M. F. Powell and T. C. Bruice, J. Am. Chem. Soc., <u>105</u>, 7139 (1983).

 (Received May 30, 1987)